Interactions between active particles and dynamical structures in chaotic flow

Author:

Khurana Nidhi1,Ouellette Nicholas T.1

Affiliation:

1. Yale University Department of Mechanical Engineering and Materials Science, , New Haven, Connecticut 06520, USA

Abstract

Using a simple model, we study the transport dynamics of active, swimming particles advected in a two-dimensional chaotic flow field. We work with self-propelled, point-like particles that are either spherical or ellipsoidal. Swimming is modeled as a combination of a fixed intrinsic speed and stochastic terms in both the translational and rotational equations of motion. We show that the addition of motility to the particles causes them to feel the dynamical structure of the flow field in a different way from fluid particles, with macroscopic effects on the particle transport. At low swimming speeds, transport is suppressed due to trapping on transport barriers in the flow; we show that this effect is enhanced when stochastic terms are added to the swimming model or when the particles are elongated. At higher speeds, we find that elongated swimmers tend be attracted to the stable manifolds of hyperbolic fixed points, leading to increased transport relative to swimming spheres. Our results may have significant implications for models of real swimming organisms in finite-Reynolds-number flows.

Publisher

AIP Publishing

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ballistic to diffusive transition for swimmers in a periodic vortex array;Physical Review E;2024-09-09

2. Bacterial barriers;Journal of Fluid Mechanics;2024-06-10

3. Enhancing transport barriers with swimming micro-organisms in chaotic flows;Journal of Fluid Mechanics;2024-05-31

4. Microswimmer trapping in surface waves with shear;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-10

5. Jeffery’s Orbits and Microswimmers in Flows: A Theoretical Review;Journal of the Physical Society of Japan;2023-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3