Thermally stable piezoelectric fiber based on perfluoroalkoxy alkane piezoelectret with a lotus root structure

Author:

Zhou Lian1ORCID,Hu Qianqian1ORCID,Shi Jiayou2,Ling Quan2,Yuan Yujin2,Zhang Tongyan3,Zhang Xiaoqing1ORCID

Affiliation:

1. Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University 1 , Shanghai 200092, China

2. Nantong HWATEK Wires and Cable Co., Ltd. 2 , Nantong 226500, China

3. School of Information Management, Shanghai Lixin University of Accounting and Finance 3 , Shanghai 201209, China

Abstract

Advanced functional fibers, which can endow common textiles with specific functionalities by traditional weaving processes without losing their basic features, including flexibility, breathability, and wash ability, are desired in flexible and wearable devices. However, the performance of piezoelectric wire sensors in previous studies has been unsatisfactory, especially in harsh environments. This article reports a thermally stable thin piezoelectric fiber with a lotus root structure, consisting of a core electrode, a perfluoroalkoxy alkane piezoelectret layer, a ground/shield electrode, and an outer jacket. The specific structure together with a small diameter of 0.4 mm makes such fiber sensors very flexible and suitable to be woven into clothing or integrated into thin substrates. The piezoelectric sensitivity of the fibers, up to 1.50 pC/N at 0.25 MPa, is achieved and very stable in a broad operating temperature ranging from −79 to 150 °C, showing a promising application prospect in extreme environments. The fabrics and socks woven with such fibers can detect various motions, demonstrating their practicability in smart clothing for ordinary applications such as rehabilitation and gait analysis and special purposes such as functional clothing for astronauts and firefighters who may expose to very low- or high-temperature environments.

Funder

The National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3