Affiliation:
1. Division of Mechanical and Aerospace Engineering, Hokkaido University, Sapporo 060-8628, Japan
2. Department of Mechanical Engineering, Shizuoka University, Hamamatsu 432-8561, Japan
Abstract
A water drop impacting a dry solid surface can eject a thin liquid sheet, which is forced to expand on the surface to wet the solid surface. Wetting failure, which produces defects in applications based on the impact of drops, including coating, cooling, cleaning, and printing, may occur with a sufficiently large liquid-sheet velocity. However, the exact onset of wetting failure when a drop impacts the surface has yet to be determined. Therefore, we examine the dependence of rim instability immediately after liquid-sheet ejection on the static contact angle of the solid surface at the instant of water drop impact. This study is the first attempt to solve this problem and is made possible only by using an ultra-high-speed camera. We revealed that wetting failure can occur by investigating the rim instability of the liquid sheet.
Funder
Japan Society for the Promotion of Science
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献