Hydrodynamic collision and deformation of compound droplet pairs in confined shear flow

Author:

Al Mamun S. M. Abdullah1ORCID,Farokhirad Samaneh1ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology , Newark, New Jersey 07114, USA

Abstract

In this study, we numerically investigate the collision dynamics of core–shell compound droplet pairs under confined shear flow conditions. We focus on three collision modes: pass-over, coalescence, and reverse-back motions, analyzing their motion trajectories and morphological evolution. Notably, the coalescence mode exhibits significant dynamic behavior during evolution. However, the coalescence behavior of compound droplet pairs, as well as the impact of geometric parameters, including the initial vertical offset of droplets and the degree of confinement, on their dynamic behaviors, remains largely unexplored and unquantified. Our simulation results reveal that core droplets have little effect on the trajectory of droplet pairs during their pass-over and reverse-back motions, yet they significantly affect the dynamics in the coalescence mode. Additionally, we have addressed how the interplay between the core-shell size ratio, initial offset, and wall confinement affects the transition between collision modes, morphology, trajectory, and final state of the droplet pairs. Our findings show that an increase in the core–shell size ratios restricts the deformability of the shell droplets. Furthermore, in the coalescence mode, larger core droplets coalesce more rapidly due to spatial adjustment, expediting the stabilization of the newly formed compound droplet. While the size of the core droplets does not alter the transition boundary from coalescence to reverse-back mode based on initial vertical offset, they significantly influence the transition from coalescence to pass-over mode. Moreover, by analyzing confinement as another crucial geometric factor, we demonstrate the coupling effects of confinement and initial vertical offset on the transition between different collision modes.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3