Analysis on flow-induced vibration of square cylinders with different vibration forms and the flow energy harvesting capacity

Author:

Yu MengyaoORCID,Wang Xiaoyan,Cai JianchengORCID,Brazhenko Volodymyr12ORCID,Tan Jianbo,Xu Zisheng,E Shiju

Affiliation:

1. College of Engineering, Zhejiang Normal University 1 , Jinhua 321004, China

2. Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province 2 , Jinhua 321005, China

Abstract

This study numerically investigates the flow-induced vibration (FIV) of a single-degree-of-freedom transverse vibration and pivoted rotation of a square cylinder with the Reynolds number (Re) range of 0.7 × 104 to 6 × 104. Different FIV phenomena with Re increasing are reported. In the vortex-induced vibration (VIV) branch, the amplitude and energy harvest efficiency of the transverse vibration are higher than those of the pivoted rotation, and the situation is opposite in the VIV-galloping transition and galloping branches. Checking the wake vortex indicated that the change in the angle of attack caused by the pivoted rotation of the square cylinder was the cause of these phenomena. The most significant feature was that, at the maximum amplitude, a pair of co-rotating vortices (C mode) shed. The transverse vibration had larger vibration amplitudes and lower aerodynamic force and energy harvest efficiency compared with the pivoted rotation in galloping, and the energy harvest efficiency no longer increased with higher Re. The energy harvest efficiency of the pivoted rotation had two outstanding peaks at maximum pivot angles of θmax = 29° and 41.2°, followed by a decreasing trend. For the transverse vibration, the force induced by the vortices cancels each other out so that the energy harvest efficiency almost does not change. For the pivoted rotation, the amplitude, which does not increase, makes it easier for the wake vortex to interact and interfere with the energy harvest procedure.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3