Pressure-induced optical anisotropy of HfS2

Author:

Antoniazzi Igor1ORCID,Woźniak Tomasz1ORCID,Pawbake Amit2ORCID,Zawadzka Natalia1ORCID,Grzeszczyk Magdalena13ORCID,Muhammad Zahir4ORCID,Zhao Weisheng4ORCID,Ibáñez Jordi5ORCID,Faugeras Clement2ORCID,Molas Maciej R.1ORCID,Babiński Adam1ORCID

Affiliation:

1. Faculty of Physics, University of Warsaw 1 , Pasteura 5, 02-093 Warsaw, Poland

2. Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL 2 , Grenoble, France

3. Institute for Functional Intelligent Materials, National University of Singapore 3 , Singapore 117544, Singapore

4. Hefei Innovation Research Institute, School of Microelectronics, Beihang University 4 , Hefei 230013, People’s Republic of China

5. Geosciences Barcelona (GEO3BCN), CSIC 5 , Lluís Solé i Sabarís s.n., 08028 Barcelona, Catalonia, Spain

Abstract

The effect of pressure on Raman scattering (RS) in bulk HfS2 is investigated under hydrostatic and non-hydrostatic pressure conditions. The RS line shape does not change significantly in the hydrostatic regime up to P = 9.6 GPa, showing a systematic blueshift of the spectral features. In a non-hydrostatic environment, seven peaks appear in the spectrum at P = 7 GPa, which dominate the RS line shape up to P = 10.5 GPa. The change in the RS line shape manifests a pressure-induced phase transition in HfS2. The simultaneous observation of both low-pressure (LP) and high-pressure (HP) related RS peaks suggests the coexistence of two different phases over a wide pressure range. It is found that the HP-related phase is metastable and persists during the decompression cycle down to P = 1.2 GPa, while the LP-related features eventually recover at even lower pressure. The angle-resolved polarized RS performed under P = 7.4 GPa revealed a strong in-plane anisotropy of both the LP-related A1g mode and the HP peaks. The anisotropy is related to the possible distortion of the structure induced by the non-hydrostatic component of the pressure. The results are explained in terms of a distorted Pnma phase as a possible pressure-induced phase of HfS2.

Funder

Beihang University

Interdyscyplinarne Centrum Modelowania Matematycznego i Komputerowego UW

University of Warsaw

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3