Nonequilibrium bandgap modification in porphyrin-based metal-organic frameworks revealed by transient absorption spectroscopy

Author:

Han Yadong12,Yu Junhong12ORCID,Yang Yunfan12,Zhang Hang12ORCID,Wang Zhengbang3ORCID,Hu Jianbo12ORCID

Affiliation:

1. Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics 1 , Mianyang 621900, China

2. State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology 2 , Mianyang 621010, China

3. Key Laboratory for the Green Preparation and Application of Functional Materials Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University 3 , Wuhan 430062, China

Abstract

Modifying the equilibrium bandgap has proven to be an effective strategy for optimizing photocarrier properties in metal-organic frameworks (MOFs). In this work, we have investigated the nonequilibrium bandgap modification in cobalt porphyrin-based MOF (Co-TCPP MOF) nanofilms through transient absorption spectroscopy. Our results reveal a captivating redshift–blueshift crossover in the nonequilibrium bandgap of Co-TCPP MOFs, with a staggering maximum shifting value of approximately 170 meV, achieved with an excitation fluence of 96 μJ/cm2. This phenomenon sets the stage for further investigations into harnessing nonequilibrium bandgap modification as a powerful tool for tailoring photocarrier properties. Another key facet of our research is the revelation that the bandgap modification effect observed in Co-TCPP MOFs is strongly dependent on the excitation fluence and is absent in disordered porphyrin molecules. This observation suggests a correlation between the bandgap modification and the amplified many-body interactions present within the ordered MOF structure, thus offering valuable insights into the intricate relationship between bandgap modification, excitation fluence, and ordered MOF structures.

Funder

Science Challenge Project

Project of State Key Laboratory of Environmental Friendly Energy Materials, SWUST

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3