Room-temperature stability of excitons and transverse-electric polarized deep-ultraviolet luminescence in atomically thin GaN quantum wells

Author:

Bayerl Dylan1,Kioupakis Emmanouil1

Affiliation:

1. Department of Materials Science and Engineering, University of Michigan , Ann Arbor, Michigan 48109, USA

Abstract

We apply first-principles calculations to study the effects of extreme quantum confinement on the electronic, excitonic, and radiative properties of atomically thin (1–4 atomic monolayers) GaN quantum wells embedded in AlN. We determine the quasiparticle bandgaps, exciton energies and wave functions, radiative lifetimes, and Mott critical densities as a function of well and barrier thickness. Our results show that quantum confinement in GaN monolayers increases the bandgap up to 5.44 eV and the exciton binding energy up to 215 meV, indicating the thermal stability of excitons at room temperature. Exciton radiative lifetimes range from 1 to 3 ns at room temperature, while the Mott critical density for exciton dissociation is approximately 1013 cm−2. The luminescence is transverse-electric polarized, which facilitates light extraction from c-plane heterostructures. We also introduce a simple approximate model for calculating the exciton radiative lifetime based on the free-carrier bimolecular radiative recombination coefficient and the exciton radius, which agrees well with our results obtained with the Bethe–Salpeter equation predictions. Our results demonstrate that atomically thin GaN quantum wells exhibit stable excitons at room temperature for potential applications in efficient light emitters in the deep ultraviolet as well as room-temperature excitonic devices.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3