Particle sorting method based on swirl induction

Author:

Hu Shuai1ORCID,Zhang Qin1ORCID,Ou Zhiming1ORCID,Dang Yanping1ORCID

Affiliation:

1. School of Mechanical and Automotive Engineering, South China University of Technology , Guangzhou 510641, China

Abstract

Fluid-based methods for particle sorting demonstrate increasing appeal in many areas of biosciences due to their biocompatibility and cost-effectiveness. Herein, we construct a microfluidic sorting system based on a swirl microchip. The impact of microchannel velocity on the swirl stagnation point as well as particle movement is analyzed through simulation and experiment. Moreover, the quantitative mapping relationship between flow velocity and particle position distribution is established. With this foundation established, a particle sorting method based on swirl induction is proposed. Initially, the particle is captured by a swirl. Then, the Sorting Region into which the particle aims to enter is determined according to the sorting condition and particle characteristic. Subsequently, the velocities of the microchannels are adjusted to control the swirl, which will induce the particle to enter its corresponding Induction Region. Thereafter, the velocities are adjusted again to change the fluid field and drive the particle into a predetermined Sorting Region, hence the sorting is accomplished. We have extensively conducted experiments taking particle size or color as a sorting condition. An outstanding sorting success rate of 98.75% is achieved when dealing with particles within the size range of tens to hundreds of micrometers in radius, which certifies the effectiveness of the proposed sorting method. Compared to the existing sorting techniques, the proposed method offers greater flexibility. The adjustment of sorting conditions or particle parameters no longer requires complex chip redesign, because such sorting tasks can be successfully realized through simple microchannel velocities control.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3