Quantification of face seal leakage using parallel resistance model

Author:

Pushpawela Buddhi12ORCID,Chea Peter23ORCID,Ward Ryan4ORCID,Flagan Richard C.2ORCID

Affiliation:

1. Department of Physics and Astronomy, The University of Alabama in Huntsville 1 , Huntsville, Alabama 35899, USA

2. Division of Chemistry and Chemical Engineering, California Institute of Technology 2 , Pasadena, California 91125, USA

3. HGenium, Inc 3 , Pasadena, California 91103, USA

4. Division of Environmental Science and Engineering, California Institute of Technology 4 , Pasadena, California 91125, USA

Abstract

Mask-wearing emerged as the key safety measure to prevent the spreading of COVID-19. In this study, we hypothesized a model to quantify the leakage flow rate through the face mask based on a parallel resistance model. The tests were performed in two ways: (I) mask material test, in which all masks were sealed to a flange to measure transmission through a full mask and prevent leakage around the edges, and (II) mannequin mask test, in which masks were fitted to a mannequin head tightly. For all masks, the pressure drop was measured at eight different flow rates between 5 and 85 LPM, and it was increased linearly with the flow rate (r2 > 0.98). The results of the study showed that the leakage flow rate was 10% of the total flow rate, even for the best-fitted N95 filtering facepiece respirators (FFRs) and KN95 masks. They showed higher resistance to the leaks. The procedure masks and cloth masks showed a leakage flow rate of 25% of the value of the total flow rate, quite a large proportion of the flow. They had lower resistance to leaks.

Funder

This research did not recieve any grant.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3