Probing electronic dead layers in homoepitaxial n-SrTiO3(001) films

Author:

Chambers S. A.1ORCID,Lee D.2ORCID,Yang Z.23,Huang Y.3ORCID,Samarakoon W.14,Zhou H.5,Sushko P. V.1,Truttmann T. K.2,Wangoh L. W.16,Lee T.-L.7,Gabel J.7ORCID,Jalan B.2ORCID

Affiliation:

1. Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA

2. Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 99545, USA

3. School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 99545, USA

4. School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, USA

5. Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA

6. International Business Machines Research–Albany Nanotech Complex, Albany, New York 12203, USA

7. Diamond Light Source, Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom

Abstract

We combine state-of-the-art oxide epitaxial growth by hybrid molecular beam epitaxy with transport, x-ray photoemission, and surface diffraction, along with classical and first-principles quantum mechanical modeling to investigate the nuances of insulating layer formation in otherwise high-mobility homoepitaxial n-SrTiO3(001) films. Our analysis points to charge immobilization at the buried n-SrTiO3/undoped SrTiO3(001) interface as well as within the surface contamination layer resulting from air exposure as the drivers of electronic dead-layer formation. As Fermi level equilibration occurs at the surface and the buried interface, charge trapping reduces the sheet carrier density ( n2 D) and renders the n-STO film insulating if n2 D falls below the critical value for the metal-to-insulator transition.

Funder

U.S. Department of Energy

National Science Foundation

Air Force Office of Scientific Research

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3