ANNaMo: Coarse-grained modeling for folding and assembly of RNA and DNA systems

Author:

Tosti Guerra F.1ORCID,Poppleton E.23ORCID,Šulc P.24ORCID,Rovigatti L.1ORCID

Affiliation:

1. Department of Physics, Sapienza University of Rome 1 , Roma, Italy

2. School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University 2 , Tempe, Arizona 85281, USA

3. Biophysical Engineering Group, Max Planck Institute for Medical Research 3 , Heidelberg, Germany

4. Department of Bioscience, School of Natural Sciences, Technical University Munich 4 , Munich, Germany

Abstract

The folding of RNA and DNA strands plays crucial roles in biological systems and bionanotechnology. However, studying these processes with high-resolution numerical models is beyond current computational capabilities due to the timescales and system sizes involved. In this article, we present a new coarse-grained model for investigating the folding dynamics of nucleic acids. Our model represents three nucleotides with a patchy particle and is parameterized using well-established nearest-neighbor models. Thanks to the reduction of degrees of freedom and to a bond-swapping mechanism, our model allows for simulations at timescales and length scales that are currently inaccessible to more detailed models. To validate the performance of our model, we conducted extensive simulations of various systems: We examined the thermodynamics of DNA hairpins, capturing their stability and structural transitions, the folding of an MMTV pseudoknot, which is a complex RNA structure involved in viral replication, and also explored the folding of an RNA tile containing a k-type pseudoknot. Finally, we evaluated the performance of the new model in reproducing the melting temperatures of oligomers and the dependence on the toehold length of the displacement rate in toehold-mediated displacement processes, a key reaction used in molecular computing. All in all, the successful reproduction of experimental data and favorable comparisons with existing coarse-grained models validate the effectiveness of the new model.

Funder

National Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3