A hydrogen sensor based on an acoustic topological material with a coiled structure

Author:

Liu Zheng1ORCID,Zhang Ruoyan1,Duan Zhendong1,Fan Li1ORCID,Zhang Shuyi1,Cheng Liping1ORCID,Xu Xiaodong1ORCID

Affiliation:

1. Laboratory of Modern Acoustics, Institute of Acoustics, Nanjing University , Nanjing 210093, People’s Republic of China

Abstract

A hydrogen sensor is created on the basis of an acoustic topological material with a coiled structure. Compared to traditional hydrogen sensors, the sensor does not possess a sensitive layer and works with the shift of a topological interface state induced by hydrogen. The sensor is composed of two phononic crystals with distinct topological characteristics, and an interface state is achieved at the interface of both phononic crystals. When hydrogen is introduced into the sensor, the density and the sound velocity of the gas in the sensor change, which shifts the frequency of the interface state. Thus, the concentration of hydrogen can be obtained by measuring the frequency shift of the interface state. Due to the absence of a sensitive layer, the sensor operates without a chemical sorption process, and the performance of the sensor is marginally influenced by working conditions, temperature, and humidity. Theoretical analysis, numerical simulations, and experimental results show that in different background gases, synthetic air, nitrogen, and argon, the sensor exhibits relative sensitivities of 0.50, 0.50, and 0.37, which do not change with the working conditions. Additionally, the sensor possesses a rapid response, a good linearity and robustness, and a long lifespan. Furthermore, the sensor is designed based on a coiled structure, which considerably improves the space utilization and decreases the bulk.

Funder

National Key Research and Development Program of China

National natural science foundation of china

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3