Affiliation:
1. Laboratory of Modern Acoustics, Institute of Acoustics, Nanjing University , Nanjing 210093, People’s Republic of China
Abstract
A hydrogen sensor is created on the basis of an acoustic topological material with a coiled structure. Compared to traditional hydrogen sensors, the sensor does not possess a sensitive layer and works with the shift of a topological interface state induced by hydrogen. The sensor is composed of two phononic crystals with distinct topological characteristics, and an interface state is achieved at the interface of both phononic crystals. When hydrogen is introduced into the sensor, the density and the sound velocity of the gas in the sensor change, which shifts the frequency of the interface state. Thus, the concentration of hydrogen can be obtained by measuring the frequency shift of the interface state. Due to the absence of a sensitive layer, the sensor operates without a chemical sorption process, and the performance of the sensor is marginally influenced by working conditions, temperature, and humidity. Theoretical analysis, numerical simulations, and experimental results show that in different background gases, synthetic air, nitrogen, and argon, the sensor exhibits relative sensitivities of 0.50, 0.50, and 0.37, which do not change with the working conditions. Additionally, the sensor possesses a rapid response, a good linearity and robustness, and a long lifespan. Furthermore, the sensor is designed based on a coiled structure, which considerably improves the space utilization and decreases the bulk.
Funder
National Key Research and Development Program of China
National natural science foundation of china