Material discovery and modeling acceleration via machine learning

Author:

Zuccarini Carmine1ORCID,Ramachandran Karthikeyan1ORCID,Jayaseelan Doni Daniel1ORCID

Affiliation:

1. Department of Aerospace and Aircraft Engineering, Kingston University, Roehampton Vale Campus , London, SW15 3DW, United Kingdom

Abstract

This paper delves into the transformative role of Machine Learning (ML) and Artificial Intelligence (AI) in materials science, spotlighting their capability to expedite the discovery and development of newer, more efficient, and stronger compounds. It underscores the shift from traditional, resource-intensive approaches toward data-driven methodologies that leverage large datasets to predict properties, identify new materials, and optimize synthesis conditions with a satisfactory level of accuracy. Highlighting various techniques, including supervised, unsupervised, and reinforcement learning, alongside deep learning potential, the chapter presents case studies and applications ranging from predicting stress points in stochastic fields to optimizing thermal protection systems for spacecraft re-entry. It also explores the challenges and future directions, emphasizing the need for integrating experimental validations and developing tailored algorithms to overcome data and computational constraints. The narrative showcases ML and AI’s promise in revolutionizing material discovery, paving the way for innovative solutions in science and engineering.

Publisher

AIP Publishing

Reference26 articles.

1. Machine learning in materials - recent progress and emerging applications,2016

2. Scope of machine learning in materials research—A Review;Appl. Surf. Sci. Adv.,2023

3. Materials informatics: An emerging technology for materials development;Stat. Anal. Data Min.: ASA Data Sci. J.,2009

4. T. Gupta , Towards data science Available at: https://towardsdatascience.com/deep-learning-feedforward-neural-network-26a6705dbdc7

5. Machine learning-based accelerated property prediction of two-phase materials using microstructural descriptors and finite element analysis;Comput. Mater. Sci.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3