A quantum computing implementation of nuclearelectronic orbital (NEO) theory: Toward an exact pre-Born–Oppenheimer formulation of molecular quantum systems

Author:

Kovyrshin Arseny1ORCID,Skogh Mårten12ORCID,Broo Anders1ORCID,Mensa Stefano3ORCID,Sahin Emre3ORCID,Crain Jason45ORCID,Tavernelli Ivano6ORCID

Affiliation:

1. Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg 1 , Pepparedsleden 1, Molndal SE-431 83, Sweden

2. Department of Chemistry and Chemical Engineering, Chalmers University of Technology 2 , Gothenburg, Sweden

3. The Hartree Centre, STFC, Sci-Tech Daresbury 3 , Warrington WA4 4AD, United Kingdom

4. IBM Research Europe, Hartree Centre STFC Laboratory, Sci-Tech Daresbury 4 , Warrington WA4 4AD, United Kingdom

5. Department of Biochemistry, University of Oxford 5 , Oxford OX1 3QU, United Kingdom

6. IBM Quantum, IBM Research Europe – Zurich 6 , Säumerstrasse 4, 8803 Rüschlikon, Switzerland

Abstract

Nuclear quantum phenomena beyond the Born–Oppenheimer approximation are known to play an important role in a growing number of chemical and biological processes. While there exists no unique consensus on a rigorous and efficient implementation of coupled electron–nuclear quantum dynamics, it is recognized that these problems scale exponentially with system size on classical processors and, therefore, may benefit from quantum computing implementations. Here, we introduce a methodology for the efficient quantum treatment of the electron–nuclear problem on near-term quantum computers, based upon the Nuclear–Electronic Orbital (NEO) approach. We generalize the electronic two-qubit tapering scheme to include nuclei by exploiting symmetries inherent in the NEO framework, thereby reducing the Hamiltonian dimension, number of qubits, gates, and measurements needed for calculations. We also develop parameter transfer and initialization techniques, which improve convergence behavior relative to conventional initialization. These techniques are applied to H2 and malonaldehyde for which results agree with NEO full configuration interaction and NEO complete active space configuration interaction benchmarks for ground state energy to within 10−6 hartree and entanglement entropy to within 10−4. These implementations therefore significantly reduce resource requirements for full quantum simulations of molecules on near-term quantum devices while maintaining high accuracy.

Funder

Horizon 2020 Framework Program

National Center of Competence in Research Materials’ Revolution: Computational Design and Discovery of Novel Materials

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3