Comprehensive device modeling and performance analysis of (Cs, FA)Pb(I, Br)3 based perovskite–silicon tandem solar cells

Author:

Wu Zhenhui1,Pan Zhaoyao2ORCID,Yang Jinpeng2ORCID

Affiliation:

1. 1 Department of Electronics, Yangzhou Polytechnic College, Yangzhou , Jiangsu 225009, China

2. College of Physical Science and Technology, Yangzhou University 2 , Yangzhou, Jiangsu 225009, China

Abstract

The utilization of perovskite films as the top subcell to form a perovskite–silicon tandem solar cell has emerged as an attractive approach to achieve higher power conversion efficiency (PCE) that could surpass the Shockley–Queisser limit for single silicon junction. Despite these efforts, precisely understanding and predicting the underlying mechanism necessary for obtaining higher PCE remains a challenging task. In particular, the absorption due to back electrode reflection during calculations has often been neglected, resulting in an underestimation when comparing theoretical calculations to experimental conditions. In this study, we conduct a comprehensive investigation of perovskite–silicon tandem solar cells with considering the back electrode reflection to study the detailed influence on film quality of perovskite films, where a detailed analysis of multiple factors such as bulk and interface defects, doping levels, and carrier mobility from (Cs, FA)Pb(I, Br)3 has been conducted to unveil their effects on device performance. Our results revealed that lower bulk/interface defect concentrations and higher carrier mobility are critical factors contributing to the best device performance, where the highest PCE would reach up to 37.40%. Further comparison with experimental results also confirms the importance of employing effective methods to reduce surface/interface trap densities in order to enhance overall performance. These findings offer valuable theoretical insights for the guidance of experimental designs of perovskite–silicon tandem solar cells.

Funder

the Science and Technology on Metrology and Calibration Laboratory

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3