Coherent structures and turbulent model refinement in oblique shock/hypersonic turbulent boundary layer interactions

Author:

Yu MingORCID,Sun Dong,Zhou QingQing,Liu PengXin,Yuan XianXuORCID

Abstract

In the present study, we investigate the evolution of turbulent statistics and coherent structures in hypersonic turbulent boundary layers at the Mach number of 5 impinged by oblique shock waves generated by the wedge with the angles of 14°, 10°, and 6°, inducing strong, mild, and incipient flow separation, by exploiting direct numerical simulation databases, for the purpose of revealing the underlying flow physics that are of significance to turbulent modeling. We found that the large-scale structures are amplified within the interaction zone, manifested in the form of large-scale low- and high-speed streaks with the spanwise length scale of boundary layer thickness, and gradually decay downstream, the process of which is extremely long. The abrupt variation in the characteristic length, time, and velocity scales as well as the incompatible viscous dissipation of the mean and turbulent kinetic energy results in the incorrect predictions by the Reynolds-Averaged Navier–Stokes (RANS) equation simulations, provided the models are established based on solving the transport equations of the turbulent kinetic equation and its viscous dissipation (k−ε or k−ω models, for instance). To amend this issue, we propose to refine the parameters in the model as the functions of wall pressure, the flow quantities related to multiple flow features. The RANS simulations with the k−ω SST model utilizing the proposed refinement improve greatly the accuracy of the skin friction, wall heat flux, and Reynolds shear stress downstream of the interaction zone, and the wall pressure distributions in hypersonic turbulence over compression ramp, suggesting its promising prospect in engineering applications.

Funder

National Key Research and Development Program of China

National Natural science foundation of China

China Postdoctoral Science Foundation

Beijing Fluid Dynamics Scientific Research Center

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3