Graphics processing unit (GPU)-enhanced nonhydrostatic model with grid nesting for global tsunami propagation and coastal inundation

Author:

Wang HangORCID,Wang GangORCID,Fu Ruili,Zheng JinhaiORCID,Wang PeitaoORCID,Yu Fujiang,Liang QiuhuaORCID

Abstract

Nonhydrostatic models have proven their superiority in describing tsunami propagation over trans-oceanic distances and nearshore transformation because of their good dispersion and nonlinearity properties. The novel one-layer nonhydrostatic formulations proposed by Wang et al. [Phys. Fluids 35, 076610 (2023)] have been rederived in the spherical coordinate system incorporating Coriolis effects to enable the application of basin-wide tsunami propagation. The model was implemented using the fractional step method, where the hydrostatic step was solved by a Godunov-type finite-volume scheme, and the nonhydrostatic step was obtained with the finite-difference method. Additionally, a two-way grid-nesting scheme was employed to adapt the topographic features for efficient computation of tsunami propagation in deep ocean and coastal inundation. Furthermore, graphics processing unit (GPU)-parallelism technique was incorporated to further optimize the model performance. An idealized benchmark test as well as three experiments of regular and irregular waves, solitary, and N-waves transformations have been simulated to demonstrate the superior performance of the current GPU-accelerated grid-nesting nonhydrostatic model. Finally, the model has been applied to reproduce the 1964 Prince William Sound Tsunami, its propagation across the North Pacific and induced inundation in the Seaside.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3