A Bayesian optimization framework for the control of combustion instability of a bluff-body stabilized combustor

Author:

Yang JunORCID,Shao ChangxiaoORCID,Wang Lei,Wen Qizhe,Yang Niewei,Chen Zhi X.ORCID,Li LeiORCID,An QiangORCID,Jin TaiORCID,Luo KunORCID

Abstract

Control of combustion instability for a realistic gas-turbine combustor is challenging. This work aims to establish an efficient numerical framework for optimization to improve the combustion stability of a bluff-body combustor. Large eddy simulations of the spray combustion process are conducted, and the experimental measurements are used to evaluate the numerical accuracy of the baseline case. The air preheating temperature, the Sauter mean diameter of fuel droplets, and the location of liquid fuel injection are regarded as input variables. The root mean square of pressure amplitude is regarded as an optimization objective. The Bayesian optimization framework is proposed that includes the sampling process, surrogate model, acquisition function, and genetic algorithm optimizer processes. It is found that PRMS can be reduced by 64% for the optimized case compared to the baseline case using only 17 sample evaluations. This work is promising as it provides an effective optimization framework for the development of next-generation gas-turbine combustors.

Funder

National Natural Science Foundation of China

the Talent Recruitment Project of Guangdong

the Guangdong Basic and Applied Basic Research Foundation

the Foundation of Shenzhen Science and Technology Committee

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3