Ultra-short-term wind power forecasting based on feature weight analysis and cluster dynamic division

Author:

Chang Chen12ORCID,Meng Yuyu1,Huo Jiuyuan12ORCID,Xu Jihao1,Xie Tian1

Affiliation:

1. School of Electronic and Information Engineering, Lanzhou Jiaotong University 1 , Lanzhou 730070, People's Republic of China

2. National Cryosphere Desert Data Center (NCDC) 2 , Lanzhou 730000, People's Republic of China

Abstract

Accurate and reliable ultra-short-term wind power forecasting (WPF) is of great significance to the safe and stable operation of power systems, but the current research is difficult to balance the prediction accuracy, timeliness, and applicability at the same time. Therefore, this paper proposes a ultra-short-term WPF model based on feature weight analysis and cluster dynamic division. The model introduces an analytic hierarchy process and an entropy weight method to analyze the subjective and objective weight of the influencing features of wind power, respectively, then the subjective and objective weight ratio is determined by the quantum particle swarm optimization (QPSO) algorithm to obtain a more reasonable comprehensive weight of each feature. On this basis, it uses the K-Medoids algorithm to dynamically divide the wind power clusters into class regions by cycles. Then, the class region is used as the prediction unit to establish the TCN-BiLSTM model based on temporal convolutional networks (TCN) and bi-directional long short-term memory (BiLSTM) for training and prediction and optimizes the hyper-parameters of the model by the QPSO algorithm. Finally, the regional predictions are summed to obtain the final ultra-short-term power prediction. In addition, in order to verify the performance of the model, the actual operation data of a power field in Xinjiang, China, are selected for the example validation. The results show that the proposed model can ensure the prediction accuracy while minimizing the training time of the model and outperforms other existing methods in terms of prediction accuracy, timeliness, and applicability.

Funder

the National Nature Science Foundation of China

Key Research and Development Program of Gansu

Technology Innovation Guidance Program of Gansu Province

Gansu Province Science and Technology Program

the Foundation of a Hundred Youth Talents Training Program of Lanzhou Jiaotong University

Publisher

AIP Publishing

Reference55 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advancing Ultra-Short-Term Wind Power Forecasting with Multi-Channel ML Techniques;2024 6th International Conference on Energy Systems and Electrical Power (ICESEP);2024-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3