Machine-learned dynamic disorder of electron transfer coupling

Author:

Wang Yi-Siang1,Wang Chun-I1ORCID,Yang Chou-Hsun1ORCID,Hsu Chao-Ping12ORCID

Affiliation:

1. Institute of Chemistry, Academia Sinica 1 , 128 Section 2 Academia Road, Nankang, Taipei 115, Taiwan

2. Physics Division, National Center for Theoretical Sciences 2 , 1, Section 4, Roosevelt Road, Taipei 106, Taiwan

Abstract

Electron transfer (ET) is a fundamental process in chemistry and biochemistry, and electronic coupling is an important determinant of the rate of ET. However, the electronic coupling is sensitive to many nuclear degrees of freedom, particularly those involved in intermolecular movements, making its characterization challenging. As a result, dynamic disorder in electron transfer coupling has rarely been investigated, hindering our understanding of charge transport dynamics in complex chemical and biological systems. In this work, we employed molecular dynamic simulations and machine-learning models to study dynamic disorder in the coupling of hole transfer between neighboring ethylene and naphthalene dimer. Our results reveal that low-frequency modes dominate these dynamics, resulting primarily from intermolecular movements such as rotation and translation. Interestingly, we observed an increasing contribution of translational motion as temperature increased. Moreover, we found that coupling is sub-Ohmic in its spectral density character, with cut-off frequencies in the range of 102 cm−1. Machine-learning models allow direct study of dynamics of electronic coupling in charge transport with sufficient ensemble trajectories, providing further new insights into charge transporting dynamics.

Funder

National Science and Technology Council

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3