Lubricant-infused iron palmitate surfaces with high durability and stable condensation heat transfer

Author:

Gulfam Raza1ORCID

Affiliation:

1. School of Energy and Environment, Southeast University 1 , Nanjing 211100, China

Abstract

Slippery liquid-infused porous surfaces are vulnerable to lubricant depletion caused by three major factors encompassing, the evaporation, cloaking, and shearing. Herein, lubricant-infused iron palmitate surfaces (LI-IPSs) are presented addressing the challenges of (1) evaporation-driven lubricant depletion enabled by the immensely clustered micro-/nano-structures of iron palmitate surface (IPS), (2) completely suppressing the wetting ridge even with miscible water-oil combinations enabled by only the handful uptake of oil by IPS. The apparent contact angle θa and sliding angle α of water on LI-IPSs are 98° ± 2° and 3° ± 1°, respectively. Under evaporation-driven lubricant depletion analysis, the shelf-durability of LI-IPSs has been found to last for 10 days in partially open environment at the ambient temperature (25 °C). The heat fluxes and condensate fluxes have been determined. The highest condensate flux on LI-IPSs (14 kgh−1 m−2) is ascribed to the dropwise condensation mode with efficient droplet dynamics. However, the service durability of LI-IPSs has lasted only for 50 ± 5 min under rigorous condensation, which is further addressed by developing a LI-IPS prototype. Based on the excellent wicking capability of IPS, LI-IPS prototype is capable of maintaining the dropwise condensation unless the oil is available in the oil tub. The LI-IPS prototype has been subjected to open environment at ambient temperature for 168 h, and even after that, the stable dropwise condensation has been achieved with the same range of droplet speed as had been observed in the first hour. Meantime, the high condensation heat fluxes at various subcooling temperatures are obtained, justifying the promising ability of LI-IPS.

Funder

National Science Foundation of China

China Postdoctoral Science Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3