Interaction between magnon and skyrmion: Toward quantum magnonics

Author:

Li Zhengyi1,Ma Mangyuan1ORCID,Chen Zhendong1ORCID,Xie Kaile1,Ma Fusheng1ORCID

Affiliation:

1. Jiangsu Key Laboratory of Opto-Electronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing 210046, China

Abstract

In recent years, magnon and spin texture are attracting great interest in condensed matter physics and magnetism. Magnonics is aiming to use magnon as information carriers to realize functions for storage, transmission, and processing. Magnetic skyrmion is representative spin texture due to its topologically nontrivial properties. Since skyrmions are topologically protected, their transformation to other spin configurations requires overcoming additional topological energy barriers. Therefore, skyrmions are more stable than other trivial spin textures. In addition, the characters of nanoscale size, quasiparticle properties, and various excitation modes make them a potential candidate for spintronic application. Magnon and skyrmion, as two fundamental excitations, can coexist in magnetic systems and interplay with each other through direct exchange interactions. In this review, we provide an overview of recent theoretical and experimental studies on magnon–skyrmion interactions. We mainly focus on three kinds of magnon–skyrmion interactions: (i) magnon scattering by skyrmion, (ii) skyrmion motion driven by magnon, and (iii) coupling between magnon and skyrmion modes. The first two kinds of interactions could be clearly explained by the wave-particle interaction model on the classical level. Alternatively, the last kind of interaction could be understood by the coupled harmonic oscillator model on the quantum level, which indicates fast energy exchange and hybrid magnon states. The exploration focused on quantum phenomena of magnon has led to the emerging field of quantum magnonics and promoted applications of magnon in quantum information storage and processing. In the end, we give a perspective on the exploration of magnon–skyrmion interaction in quantum magnonics.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3