Affiliation:
1. Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
Abstract
This study extends the accurate and transferable molecular-orbital-based machine learning (MOB-ML) approach to modeling the contribution of electron correlation to dipole moments at the cost of Hartree–Fock computations. A MOB pairwise decomposition of the correlation part of the dipole moment is applied, and these pair dipole moments could be further regressed as a universal function of MOs. The dipole MOB features consist of the energy MOB features and their responses to electric fields. An interpretable and rotationally equivariant derivative kernel for Gaussian process regression (GPR) is introduced to learn the dipole moment more efficiently. The proposed problem setup, feature design, and ML algorithm are shown to provide highly accurate models for both dipole moments and energies on water and 14 small molecules. To demonstrate the ability of MOB-ML to function as generalized density-matrix functionals for molecular dipole moments and energies of organic molecules, we further apply the proposed MOB-ML approach to train and test the molecules from the QM9 dataset. The application of local scalable GPR with Gaussian mixture model unsupervised clustering GPR scales up MOB-ML to a large-data regime while retaining the prediction accuracy. In addition, compared with the literature results, MOB-ML provides the best test mean absolute errors of 4.21 mD and 0.045 kcal/mol for dipole moment and energy models, respectively, when training on 110 000 QM9 molecules. The excellent transferability of the resulting QM9 models is also illustrated by the accurate predictions for four different series of peptides.
Funder
DEVCOM Army Research Laboratory
U.S. Department of Energy
Caltech DeLogi Fund
Camille and Henry Dreyfus Foundation
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献