An array of microresonators as a photonic extreme learning machine

Author:

Biasi Stefano1ORCID,Franchi Riccardo1ORCID,Cerini Lorenzo1ORCID,Pavesi Lorenzo1ORCID

Affiliation:

1. Nanoscience Laboratory, Department of Physics, University of Trento , 38123 Trento, Italy

Abstract

Machine learning technologies have found fertile ground in optics due to their promising features based on speed and parallelism. Feed-forward neural networks are one of the most widely used machine learning algorithms due to their simplicity and universal approximation capability. However, the typical training procedure, where all weights are optimized, can be time and energy consuming. An alternative approach is the Extreme Learning Machine, a feed-forward neural network in which only the output weights are trained, while the internal connections are random. Here we present an experimental implementation of a photonic extreme learning machine (PELM) in an integrated silicon chip. The PELM is based on the processing of the image of the scattered light by an array of 18 gratings coupled to microresonators. Light propagation in the microresonator array is a linear process while light detection by the video camera is a nonlinear process. Training is done offline by analyzing the recorded scattered light image with a linear classifier. We provide a proof-of-concept demonstration of the PELM by solving both binary and analog tasks, and show how the performance depends on the number of microresonators used in the readout procedure.

Funder

Ministero dell'Istruzione, dell'Università e della Ricerca

HORIZON EUROPE European Research Council

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Photonic Neural Networks Based on Integrated Silicon Microresonators;Intelligent Computing;2024-01

2. Experimental Demonstration of a Photonic Extreme Learning Machine with an Array of Microresonators;2023 International Conference on Photonics in Switching and Computing (PSC);2023-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3