Deformation and breakup of a ferrofluid droplet in shear flow under magnetic field

Author:

Kawabata Yuto1ORCID,Ishida Shunichi1ORCID,Imai Yohsuke1ORCID

Affiliation:

1. Graduate School of Engineering, Kobe University , Kobe 657-8501, Japan

Abstract

Effects of magnetic field applied perpendicular to a shear plane in shear flow on the deformation of a ferrofluid droplet are numerically investigated. The boundary integral method is employed to solve the two-phase Stokes flow under a uniform magnetic field. When the magnetic field is applied perpendicular to the shear plane, the deformation of the droplet in the shear plane decreases. The magnetic field causes the droplet to elongate in the y-direction, and its cross-sectional radius in shear plane decreases. Consequently, the apparent capillary number in the shear plane decreases, thereby suppressing the droplet deformation. Droplet breakup is also suppressed by imposing a magnetic field perpendicular to the shear plane, thereby increasing the critical capillary numbers. The critical capillary numbers for the magnetic Bond numbers Bo = 2.0 and 4.0 increase to approximately 110% and 130%, respectively, than those without magnetic field. Furthermore, an equation for the theoretical prediction of the droplet deformation under a magnetic field in shear flow is presented, which is based on the small deformation theory, the decrease in the cross-sectional radius, and the boundary conditions at the droplet interface. The theoretical prediction agrees well with the numerical results for the variation in the magnetic susceptibility of the droplet as well as the viscosity ratio between the external fluid and the ferrofluid droplet under a small deformation. The critical capillary numbers under a magnetic field can also be predicted by using the numerical results without a magnetic field.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3