Insights on transport performance, thermodynamic properties, and mechanical properties of Ruddlesden–Popper antiperovskite LiBr(Li2OHBr)2 and LiBr(Li3OBr)2

Author:

Li Congcong1ORCID,Lian Sen1,Kang Chen1,Ren Junfeng1ORCID,Chen Meina1ORCID

Affiliation:

1. School of Physics and Electronics, Shandong Normal University , Jinan 250358, China

Abstract

Due to high ion conductivity, low cost, and adjustable composition, antiperovskite has attracted much attention as a potentially useful material in solid-state batteries. Compared with simple antiperovskite, Ruddlesden–Popper (R–P) antiperovskite is an updated material, which is not only more stable but also reported to significantly enhance conductivity when added to simple antiperovskite. However, systematic theoretical research on R–P antiperovskite is scarce, hindering its further development. In this study, the recently reported easily synthesized R–P antiperovskite LiBr(Li2OHBr)2 is calculated for the first time. Comparative calculations were conducted on the transport performance, thermodynamic properties, and mechanical properties of H-rich LiBr(Li2OHBr)2 and H-free LiBr(Li3OBr)2. Our results indicate that due to the presence of protons, LiBr(Li2OHBr)2 is more prone to defects, and synthesizing more LiBr Schottky defects can improve its Li-ion conductivity. Young’s modulus of the LiBr(Li2OHBr)2 is as low as 30.61 GPa, which is beneficial for its application as a sintering aid. However, the calculated Pugh’s ratio (B/G) of 1.28 and 1.50, respectively, indicates that R–P antiperovskites LiBr(Li2OHBr)2 and LiBr(Li3OBr)2 exhibit mechanical brittleness, which is not conducive to its application as solid electrolytes. Through quasi-harmonic approximation, we found that the linear thermal expansion coefficient of LiBr(Li2OHBr)2 is 2.07 × 10−5 K−1, which is more advantageous in matching electrodes than LiBr(Li3OBr)2 and even simple antiperovskites. Overall, our research provides comprehensive insights into the practical application of R–P antiperovskite in solid-state batteries.

Funder

National Natural Science Foundation of China-Shandong Joint Fund

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3