Growth kinetics and morphology characterization of binary polymeric fluid under random photo-illumination

Author:

Singh Ashish Kumar1ORCID,Chauhan Avinash1ORCID,Singh Awaneesh1ORCID

Affiliation:

1. Department of Physics, Indian Institute of Technology (BHU) , Varanasi, Uttar Pradesh 221005, India

Abstract

We present a comprehensive study using dissipative particle dynamics simulations to investigate phase separation kinetics (PSK) in three-dimensional (3d) polymeric fluids under random photo-illumination. We consider two scenarios: polymer blends with active radicals at one end of each immiscible chain and block copolymer (BCP) melts with photosensitive bonds linking incompatible blocks. The phase separation (PS) is induced by temperature quench of the initial homogeneously mixed system. Simultaneously, the system experiences random photo-illumination, simulated by two concurrent random events: (a) the recombination of active radicals in polymer blends and (b) the breaking of photosensitive bonds in BCP chains. Variations in the bond-breaking probability, Pb, mimic the change in light intensity. The length scale follows power law growth, R(t) ∼ tϕ, where ϕ represents the growth exponent. Increasing Pb results in a gradual transition in growth kinetics from micro-PS to macro-PS, accompanied by corresponding transition probabilities for both systems. Micro-PSK dominates the evolution process at low Pb values. The scaling functions exhibit data overlap for most scaled distances, indicating the statistical self-similarity of evolving patterns. Our study enhances the understanding of PSK in polymeric fluids, revealing the impact of photosensitive bonds and active radicals. Furthermore, it suggests the potential for designing novel polymeric materials with desired properties.

Funder

Science and Engineering Research Board

Council of Scientific and Industrial Research, India

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3