Gallium oxide semiconductor-based large volume ultrafast radiation hard spectroscopic scintillators

Author:

Datta A.1ORCID,Mei H.1,Lebedinsky A.2,Halasyamani P. Shiv.2,Motakef S.1

Affiliation:

1. CapeSym, Inc. 1 , Natick, Massachusetts 01760, USA

2. Department of Chemistry, University of Houston 2 , 112 Fleming Building, Houston, Texas 77204-5003, USA

Abstract

We report on the development of the first-ever inorganic radiation-hard moisture-insensitive large volume spectroscopic semiconductor-based scintillator with less than 2 ns decay time and light yields as high as 8000 ph/MeV. Despite extensive research into scintillator materials, the quest for an ideal scintillator combining ultrafast decay times (akin to BaF2 and Yb-doped scintillators such as Lu2O3:Yb), high light yields (exceeding 2000 photons per MeV), spectroscopic capabilities, and exceptional radiation hardness remain unfulfilled. In this study, we demonstrate and report for the first time the viability of large-volume (up to 20 mm thickness) gallium oxide (β-Ga2O3) semiconductor-based scintillators for applications requiring these properties. These β-Ga2O3 scintillators were grown using the fast turnaround (∼2 days) crucible-free optical float zone (FZ) technique. The high light yield and ultrafast decay time of these high-purity n-type semiconductors with free carrier concentration of 6 × 1017 cm−3 are attributed to native defects, specifically oxygen vacancies (VO) and gallium–oxygen vacancy pairs (VGa–VO), generated during optimized FZ growth. The ultrafast decay, along with high light yield, enables excellent timing resolution and high count rate detection for applications like time-of-flight positron emission tomography, physics experiments, and nuclear safety. The radiation hardness of these devices has been documented in a separate publication.

Funder

US Department of Energy, Office of Nuclear Physics

Publisher

AIP Publishing

Reference24 articles.

1. Progress on inorganic scintillators for future HEP experiments;Proc. SPIE,2021

2. Radiation damage in scintillating crystals;Nucl. Instrum. Methods Phys. Res., Sect. A,1998

3. A review of inorganic scintillation crystals for extreme environments;Crystals,2021

4. Hadron-induced radiation damage in fast crystal scintillators (conference presentation);Proc. SPIE,2019

5. Radiation damage processes in wide-gap scintillating crystals. New scintillation materials;Nucl. Phys. B, Proc. Suppl.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3