Temperature-induced suppression of structural disproportionation in paramagnetic quantum materials

Author:

Joshi Himanshu1ORCID,Wlazło Mateusz1ORCID,Gopidi Harshan Reddy1ORCID,Malyi Oleksandr I.1ORCID

Affiliation:

1. Centre of Excellence ENSEMBLE3 Sp. z o. o. , Wolczynska Str. 133, 01-919 Warsaw, Poland

Abstract

With the development of electronic structure theory, a new class of materials—quantum ones—has been recognized by the community. Traditionally, it has been believed that the properties of such compounds cannot be described within the framework of modern density functional theory, and indeed, more advanced post-mean-field theory methods are needed. Motivated by this, herein, we develop a fundamental understanding of such complex materials using the example of paramagnetic YNiO3, which is experimentally known to exhibit metal-to-insulator phase transition. We show that this material has a temperature-dependent distribution of local motifs. Thus, while at low temperatures, YNiO3 has distinct structural disproportionation with the formation of large and small octahedra, as the temperature increases, this disproportionation is suppressed. We also explain the paramagnetic monoclinic to paramagnetic orthorhombic phase transition within the double-well to single-well energy profile, predicting the variation in the corresponding energy profile as a function of octahedral size distribution. In this way, we demonstrate a fundamental understanding of structural phase transitions in quantum materials, giving insights into how they can be used for different applications and what minimum level of theory is needed to describe such types of complex materials at finite temperatures.

Funder

Fundacja na rzecz Nauki Polskiej

Horizon 2020 Framework Programme

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3