Characterization and calibration of a piezo-energetic composite film as a reactive gauge

Author:

Messer Derek K.1ORCID,Örnek Metin1ORCID,Nunes Cohen T.2ORCID,Paral Mark W.2,Son Steven F.13ORCID

Affiliation:

1. School of Mechanical Engineering, Purdue University 1 , West Lafayette, Indiana 47907, USA

2. School of Aeronautics and Astronautics, Purdue University 2 , West Lafayette, Indiana 47907, USA

3. Purdue Energetic Research Center 3 , West Lafayette, Indiana 47907, USA

Abstract

The field of multifunctional energetics encompasses a range of materials including propellants, explosives, and pyrotechnics that possess the ability to be manipulated through various characteristics that can be switched between go and no-go, or those that have controllable energy release levels or have additional functions beyond energetic output. The development of multifunctional energetics harnessing electromechanical or piezoelectric properties of polymeric materials or binder systems has garnered increasing interest in recent years. Among polymers, fluoropolymers such as poly(vinylidene fluoride) (PVDF) and copolymers such as poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)], which are used as the binder and oxidizer in the energetic formulations, have demonstrated the highest piezoelectric coefficients. In this study, we fabricated piezo-energetic composite films using aluminum nanopowders (10 wt. % active content) as fuel and P(VDF-TrFE) (70/30) as an oxidizer and investigated the piezoelectric response using a small-scale drop weight setup. Additionally, we employed a shaker setup to investigate the response of the films to vibrations. Our findings demonstrate that these piezo-energetic films can replicate the behavior of a commercial PVDF gauge at relatively low-pressure impacts, indicating their potential use as shock or pressure sensors in various fields, as well as an accelerometer gauge. Additionally, aging studies of up to one year indicated minimal loss in the energetic content of the created films, enabling the use of energetic gauges for an extended period. Our findings support the effectiveness of piezo-energetic composite films as pressure sensors or accelerometers and highlight their potential for energetic applications.

Funder

Air Force Office of Scientific Research

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3