Mixing in small scale fluidic systems swayed by rotationality effects

Author:

Kaushik P.1ORCID,Shyam Sudip2ORCID,Mondal Pranab Kumar2ORCID

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India

2. Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India

Abstract

In the present endeavor, we discuss the enhancement strategy of important fluidic functionality, i.e., mixing in an on-chip device embedded in a rotating disk both qualitatively as well as quantitatively. Our analysis, on accounting for the effect of rotation in the framework, uses a set of mechanically consistent classical fluid dynamic equations in describing the mixing of the constituent fluids comprehensively. Motivated by the need of benchmarking our modeling framework, we perform experiments in the limiting case of pure diffusion and show that suggestions from the experimental part of this endeavor verify the numerical results quite effectively. The results indicate that the effect of molecular diffusion and rotation-induced forcing non-trivially modulates the underlying mixing in the portable fluidic device. Of particular interest, we show that, even for weak molecular diffusion between the chosen fluid pair, strong advective transport of species as rendered by a higher rotational effect results in an enhanced mixing, that too achievable at short distances from the channel entry. Finally, a phase diagram mapping the mixing efficiency in the flow-fluid properties plane is provided, expected to be a design guideline for the portable fluidic systems/devices, typically used for mixing and diagnosis of bio-fluids.

Funder

Science and Engineering Research Board

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3