Numerical simulations of the flow and aerosol dispersion in a violent expiratory event: Outcomes of the “2022 International Computational Fluid Dynamics Challenge on violent expiratory events”

Author:

Pallares Jordi1ORCID,Fabregat Alexandre1ORCID,Lavrinenko Akim1ORCID,bin Norshamsudin Hadifathul Akmal2,Janiga Gabor2ORCID,Fletcher David F.3ORCID,Inthavong Kiao4ORCID,Zasimova Marina5ORCID,Ris Vladimir5,Ivanov Nikolay5ORCID,Castilla Robert6ORCID,Gamez-Montero Pedro Javier6ORCID,Raush Gustavo6,Calmet Hadrien7ORCID,Mira Daniel7ORCID,Wedel Jana8,Štrakl Mitja9ORCID,Ravnik Jure9ORCID,Fontes Douglas10ORCID,de Souza Francisco José11ORCID,Marchioli Cristian12,Cito Salvatore1ORCID

Affiliation:

1. Departament d'Enginyeria Mecànica, Universitat Rovira i Virgili 1 , Av. Països Catalans, 26 43007-Tarragona, Spain

2. Otto von Guericke Universität Magdeburg 2 , Magdeburg, Germany

3. School of Chemical and Biomolecular Engineering, The University of Sydney 3 , Sydney, Australia

4. Mechanical and Automotive Engineering, School of Engineering, RMIT University 4 , Bundoora, Victoria 3083, Australia

5. Higher School of Applied Mathematics and Computational Physics, Peter the Great St. Petersburg Polytechnic University 5 , 29 Polytechnicheskaya str., St. Petersburg 195251, Russia

6. CATMech-Fluid Mechanics Department, Universitat Politècnica de Catalunya, C/Colom 6 , 1-11, 08222 Terrassa, Spain

7. Barcelona Supercomputing Center (BSC) 7 , Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain

8. Institute of Applied Mechanics, University of Erlangen Nuremberg 8 , Erlangen, Germany

9. Faculty of Mechanical Engineering, University of Maribor 9 , Smetanova 17, SI-2000 Maribor, Slovenia

10. Engineering Program, Westmont College 10 , 955 La Paz Rd., Santa Barbara, California 93108, USA

11. School of Mechanical Engineering, Federal University of Uberlândia 11 , Uberlândia 38400-902, Brazil

12. Department of Engineering and Architecture, University of Udine 12 , Via delle scienze 208, 33100 Udine, Italy

Abstract

This paper presents and discusses the results of the “2022 International Computational Fluid Dynamics Challenge on violent expiratory events” aimed at assessing the ability of different computational codes and turbulence models to reproduce the flow generated by a rapid prototypical exhalation and the dispersion of the aerosol cloud it produces. Given a common flow configuration, a total of 7 research teams from different countries have performed a total of 11 numerical simulations of the flow dispersion by solving the Unsteady Reynolds Averaged Navier–Stokes (URANS) or using the Large-Eddy Simulations (LES) or hybrid (URANS-LES) techniques. The results of each team have been compared with each other and assessed against a Direct Numerical Simulation (DNS) of the exact same flow. The DNS results are used as reference solution to determine the deviation of each modeling approach. The dispersion of both evaporative and non-evaporative particle clouds has been considered in 12 simulations using URANS and LES. Most of the models predict reasonably well the shape and the horizontal and vertical ranges of the buoyant thermal cloud generated by the warm exhalation into an initially quiescent colder ambient. However, the vertical turbulent mixing is generally underpredicted, especially by the URANS-based simulations, independently of the specific turbulence model used (and only to a lesser extent by LES). In comparison to DNS, both approaches are found to overpredict the horizontal range covered by the small particle cloud that tends to remain afloat within the thermal cloud well after the flow injection has ceased.

Funder

Ministerio de Ciencia, Innovación y Universidades

Generalitat de Catalunya

Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München

Slovenian Research Agency

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3