Probing electronic and dielectric properties of ultrathin Ga2O3/Al2O3 atomic layer stacks made with in vacuo atomic layer deposition

Author:

Aafiya 1ORCID,Marshall Angelo1ORCID,Dodson Berg1ORCID,Goul Ryan1ORCID,Seacat Sierra1ORCID,Peelaers Hartwin1ORCID,Bray Kevin2ORCID,Ewing Dan2,Walsh Michael2,Wu Judy Z.1ORCID

Affiliation:

1. Department of Physics and Astronomy, University of Kansas 1 , Lawrence, Kansas 66045, USA

2. Department of Energy, Kansas City National Security Campus 2 , Kansas City, Missouri 64147, USA

Abstract

Ultrathin (1–4 nm) films of wide-bandgap semiconductors are important to many applications in microelectronics, and the film properties can be sensitively affected by defects especially at the substrate/film interface. Motivated by this, an in vacuo atomic layer deposition (ALD) was developed for the synthesis of ultrathin films of Ga2O3/Al2O3 atomic layer stacks (ALSs) on Al electrodes. It is found that the Ga2O3/Al2O3 ALS can form an interface with the Al electrode with negligible interfacial defects under the optimal ALD condition whether the starting atomic layer is Ga2O3 or Al2O3. Such an interface is the key to achieving an optimal and tunable electronic structure and dielectric properties in Ga2O3/Al2O3 ALS ultrathin films. In situ scanning tunneling spectroscopy confirms that the electronic structure of Ga2O3/Al2O3 ALS can have tunable bandgaps (Eg) between ∼2.0 eV for 100% Ga2O3 and ∼3.4 eV for 100% Al2O3. With variable ratios of Ga:Al, the measured Eg exhibits significant non-linearity, agreeing with the density functional theory simulation, and tunable carrier concentration. Furthermore, the dielectric constant ε of ultrathin Ga2O3/Al2O3 ALS capacitors is tunable through the variation in the ratio of the constituent Ga2O3 and Al2O3 atomic layer numbers from 9.83 for 100% Ga2O3 to 8.28 for 100% Al2O3. The high ɛ leads to excellent effective oxide thickness ∼1.7–2.1 nm for the ultrathin Ga2O3/Al2O3 ALS, which is comparable to that of high-K dielectric materials.

Funder

National Science Foundation Graduate Research Fellowship Program

Honeywell Federal Manufacturing and Technologies

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3