Identification of full-field wind loads on buildings using a mechanism-inspired recursive convolutional neural network with partial structural responses

Author:

Zhang Fubo1ORCID,Lei Ying1ORCID,Liu Lijun1ORCID,Huang Jinshan23ORCID

Affiliation:

1. School of Architecture and Civil Engineering, Xiamen University 1 , Xiamen 361005, China

2. Hubei Key Lab Disaster Prevent & Mitigate 2 , Yichang 443002, China

3. College of Civil Engineering and Architecture, Three Gorges University 3 , Yichang 443002, China

Abstract

Indirect identification approaches through structural responses have proven effective for wind load estimation in real-world engineering. Currently, methods for identifying wind loads mainly rely on theoretical inverse identification, with rare research based on the mapping relationship between structural responses and wind loads through machine learning. In this paper, a scheme for identifying full-field wind loads using a recursive convolutional neural network (CNN) inspired by physical mechanisms is proposed. The recursive form of the network, as well as the inspiration for its inputs and outputs, is inspired by the spatial correlation and the mapping relationship between wind loads and structural responses. Thus, the network inputs comprise a fusion of structural acceleration and inter-story displacement responses, while the network outputs represent the independent wind loads on structures. Notably, mismatch test is employed by the network, wherein the training and testing datasets originate from entirely different sources. Specifically, during training, Gaussian white noises that simulate wind loads are utilized, while real wind load data are used for testing. The generalization of the proposed scheme is demonstrated through the identification of full-field wind loads generated by different stationary or non-stationary wind spectra of the 76-story wind-excited benchmark building. Furthermore, the proposed scheme is validated by identifying the full-field wind loads of a 67-story shear wall structure with wind tunnel test data.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3