Entropy-driven optimization of radiative Jeffrey tetrahybrid nanofluid flow through a stenosed bifurcated artery with Hall effects

Author:

Kumar Sharma BhupendraORCID,Gandhi RishuORCID

Abstract

Atherosclerosis, which causes the artery walls to thicken, the lumen to narrow, and the wall to thin in some places, is characterized by plaque accumulation in the arteries. These blood flow modifications can cause aneurysms and heart attacks if left unattended. Most of the arteries in the cardiovascular system are branched; therefore, a parent artery (main artery) with two daughter arteries (branched arteries) is considered in the present analysis. To examine the impact of various nanoparticle combinations on blood flow, four distinct nanoparticles, namely, gold (Au), graphene oxide (GO), copper (Cu), and tantalum (Ta), were injected into the blood to generate Au–GO–Cu–Ta/blood tetrahybrid nanofluid. In arteries with small diameters, blood behavior is regarded as non-Newtonian; therefore, blood behavior is governed by Jeffrey fluid in the present analysis. It has been investigated how Hall effects, Joule heating, radiation, and viscous dissipation affect blood flow through an artery that has an overlapping stenosis in the branches and a bell-shaped stenosis in the main artery. The approximation of mild stenosis is utilized to simplify and non-dimensionalize the governing equations. The Crank–Nicolson finite-difference scheme is used in MATLAB to solve the resulting equations. The results for velocity, temperature, wall shear stress, flow rate, and heat transfer rate are represented graphically. Furthermore, the entropy optimization has been performed for the specified problem. Enhancement in velocity with half of the bifurcation angle (η) can be observed from the velocity contours. The velocity of the tetrahybrid nanofluid increases with an increase in Jeffrey fluid parameter (λ1*) and shape parameter of the nanoparticles (n) as well. Introducing nanoparticles into the bloodstream can improve targeted drug delivery, allowing for more precise treatment at the cellular level. In addition, the tunable properties of nanoparticles offer possibilities for enhanced therapeutic and diagnostic treatments in a variety of medical disorders.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3