Atomic layer-by-layer etching of graphene directly grown on SrTiO3 substrates for high-yield remote epitaxy and lift-off

Author:

Kim Ki Seok12,Kang Ji Eun2,Chen Peng13,Kim Sungkyu4ORCID,Ji Jongho5,Yeom Geun Young26ORCID,Kim Jeehwan17ORCID,Kum Hyun S.5ORCID

Affiliation:

1. Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

2. School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea

3. College of Computer Science and Technology, Zhejiang University, Hangzhou, China

4. Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, South Korea

5. Department of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea

6. SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea

7. Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Abstract

Epitaxial lift-off techniques, which aim to separate ultrathin single-crystalline epitaxial layers off of the substrate, are becoming increasingly important due to the need of lightweight and flexible devices for heterogeneously integrated ultracompact semiconductor platforms and bioelectronics. Remote epitaxy is a relatively newly discovered epitaxial lift-off technique that allows substrate-seeded epitaxial growth of ultrathin films through few layers of graphene. This universal epitaxial lift-off technique allows freestanding single-crystal membrane fabrication very quickly at low cost. However, the conventional method of remote epitaxy requires transfer of graphene grown on another substrate to the target single-crystalline substrate, which results in organic and metallic residues as well as macroscopic defects such as cracks and wrinkles, significantly reducing the yield of remote epitaxy. Here, we show that direct growth of thick graphene on the target single-crystalline substrate (SrTiO3 for this study) followed by atomic layer etching (ALE) of the graphene layers create a defect- and residue-free graphene surface for high yield remote epitaxy. We find that the ALE efficiently removes one atomic layer of graphene per cycle, while also clearing multi-dots (clumps of carbon atoms) that form during nucleation of the graphene layers. Our results show that direct-grown graphene on the desired substrate accompanied by ALE might potentially be an ideal pathway toward commercialization of remote epitaxy.

Funder

Yonsei University

National Research Foundation of Korea

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3