Single-photon emission from silicon-vacancy color centers in polycrystalline diamond membranes

Author:

Flatae Assegid Mengistu12ORCID,Sledz Florian12ORCID,Kambalathmana Haritha12,Lagomarsino Stefano3,Wang Hongcai245,Gelli Nicla3ORCID,Sciortino Silvio367,Wörner Eckhard8,Wild Christoph8,Butz Benjamin24,Agio Mario127ORCID

Affiliation:

1. Laboratory of Nano-Optics, University of Siegen 1 , 57072 Siegen, Germany

2. Cμ-Research Center of Micro- and Nanochemistry and (Bio)Technology, University of Siegen 2 , 57068 Siegen, Germany

3. Istituto Nazionale di Fisica Nucleare, Sezione di Firenze 3 , 50019 Sesto Fiorentino, Italy

4. Micro- and Nanoanalytics Group, University of Siegen 4 , 57076 Siegen, Germany

5. Institute for Materials, Ruhr-University Bochum 5 , 44801 Bochum, Germany

6. Department of Physics and Astronomy, University of Florence 6 , 50019 Sesto Fiorentino, Italy

7. National Institute of Optics (INO), National Research Council (CNR) 7 , 50125 Florence, Italy

8. Diamond Materials GmbH 8 , 79108 Freiburg, Germany

Abstract

Single-color centers in thin polycrystalline diamond membranes allow the platform to be used in integrated quantum photonics, hybrid quantum systems, and other complex functional materials. While single-crystal diamond membranes are still technologically challenging to fabricate as they cannot be grown on a non-diamond substrate, free-standing polycrystalline diamond membranes can be conveniently fabricated at large-scale from nanocrystalline diamond seeds on a substrate that can be selectively etched. However, their practical application for quantum photonics is so far limited by crystallographic defects, impurities, graphitic grain boundaries, small grain sizes, scattering loss, and strain. In this paper, we report on a single-photon source based on silicon-vacancy color centers in a polycrystalline diamond membrane. We discuss the spectroscopic approach and quantify the photon statistics, obtaining a g2(0) ≈ 0.04. Our findings hold promise for introducing polycrystalline diamond to quantum photonics and hybrid quantum systems.

Funder

German Research Foundation

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3