Investigation of cavitation bubble dynamics near a solid wall by high-resolution numerical simulation

Author:

Bußmann Alexander1ORCID,Riahi Farbod2ORCID,Gökce Bilal2ORCID,Adami Stefan13ORCID,Barcikowski Stephan4ORCID,Adams Nikolaus A.13ORCID

Affiliation:

1. Chair of Aerodynamics and Fluid Mechanics, School of Engineering and Design, Technical University of Munich, 85748 Garching bei München, Germany

2. Chair of Materials Science and Additive Manufacturing, School of Mechanical Engineering and Safety Engineering, University of Wuppertal, 42119 Wuppertal, Germany

3. Munich Institute of Integrated Materials, Energy and Process Engineering (MEP), Technical University of Munich, 85748 Garching bei München, Germany

4. Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany

Abstract

We investigate dynamics of a single cavitation bubble in the vicinity of a horizontal wall throughout expansion and collapse using a sharp–interface level-set method. The numerical scheme is based on a finite-volume formulation with low-dissipation high-order reconstruction schemes. Viscosity and surface tension are taken into account. The simulations are conducted in three-dimensional axi-symmetric space. A wide range of initial bubble wall standoff distances is covered. We focus, however, on the near-wall region where the distance between the bubble and the wall is small. We reproduce three jetting regimes: needle, mixed, and regular jets. The needle jets impose a significant load on the solid wall, exceeding the force induced by the collapse of the pierced torus bubble. For intermediate standoff distances, the large delay time between jet impact and torus bubble collapse leads to a significant decrease in the imposed maximum wall pressure. A liquid film between bubble and wall is observed whenever the bubble is initially detached from the wall. Its thickness increases linearly for very small standoff distances and growths exponentially for intermediate distances leading to a significant increase in wall-normal bubble expansion and bubble asymmetry. For configurations where the torus bubble after jet impact reaches maximum size, the collapse time of the cavitation bubble also is maximal, leading to a plateau in the overall prolongation of the cycle time of the bubble. Once the initial bubble is attached to the solid wall, a significant drop of all macroscopic time and length scales toward a hemispherical evolution is observed.

Funder

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3