Simulation of atomic zinc luminescence in rare gas solids: A localized pair potentials approach

Author:

McCaffrey John G.1,Kerins Paul N.1

Affiliation:

1. Department of Chemistry, St. Patrick's College, Maynooth, County Kildare, Ireland

Abstract

The luminescence spectroscopy of atomic zinc isolated in the solid rare gases (Zn/RG) is compared with theoretical predictions obtained from the sum of diatomic Zn⋅RG and RG⋅RG pair potentials. In particular the existence of pairs of emission bands, both of which are assigned to the same gas phase electronic transition, is examined with the use of diatomic pair potentials to simulate the potential energy surfaces of the Jahn–Teller active vibrational modes of Zn in the solid rare gases Ar, Kr, and Xe. Simulations of the solid state Zn/RG luminescence are developed from a consideration of the excited state Zn(1P1)⋅RGn van der Waals cluster species in the gas phase. The maximum binding energy of the Zn(1P1)⋅RGn clusters is found in the Zn⋅RG4 cluster having a square planar structure at the energy minimum. Based on the results of the cluster calculations, lattice distortions which led to a dominant interaction between the Zn atom and four of its host atoms were sought to simulate the solid state luminescence. Two such vibronic modes were identified; one a lattice mode in which four rare gas atoms contract on a single plane toward the Zn atom, referred to as the waist mode, and the other a motion of the Zn atom toward an octahedral interstitial site of the lattice, the body mode. Energy calculations of these modes were carried out for rigid and relaxed rare gas lattices allowing identification of the high energy emission bands in the Zn/RG systems as arising from the waist mode, while the lower energy bands are associated with the body mode. The model also rationalizes the differences exhibited in the time-resolved behavior of the pairs of singlet emission bands in the Zn/Ar and Zn/Kr systems, whereby the lower energy band of a given system shows a risetime of a few hundred picoseconds while the higher energy band exhibits direct feeding. The steep gradient calculated on the waist mode, feeding the high energy band, and the flat gradient found on the body mode, feeding the lower energy emission, are consistent with the existence of a risetime in the latter and its absence in the former. The close agreement found between theory and experiment indicates the validity of using pair potentials in analysis of matrix zinc spectroscopy and thereby indicates that the luminescence is controlled by localized guest–host interactions.

Publisher

AIP Publishing

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3