Effect of Ca2+ binding states of calmodulin on the conformational dynamics and force responses of myosin lever arm

Author:

Wu Yichao12,Zhang Yangyang12,Xu Xiulian3,Wang Wei1

Affiliation:

1. Department of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

2. Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China

3. School of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China

Abstract

The mechanochemical coupling and biological function of myosin motors are regulated by Ca2+ concentrations. As one of the regulation pathways, Ca2+ binding induces a conformational change of the light chain calmodulin and its binding modes with a myosin lever arm, which can affect the stiffness of the lever arm and force transmission. However, the underlying molecular mechanism of the Ca2+ regulated stiffness change is not fully understood. Here, we study the effect of Ca2+ binding on the conformational dynamics and stiffness of the myosin VIIa lever arm bound with a calmodulin by performing molecular dynamics simulations and dynamic correlation network analysis. The results showed that the calmodulin bound lever arm at an apo state can sample three different conformations. In addition to the conformation observed in a crystal structure, a calmodulin bound lever arm at the apo condition can also adopt other two conformations featured by different extents of small-angle bending of the lever arm. However, large-angle bending is strongly prohibited. Such results suggest that the calmodulin bound lever arm without Ca2+ binding is plastic for small-angle deformation but shows high stiffness for large-angle deformation. In comparison, after the binding of Ca2+, although the calmodulin bound lever arm is locally more rigid, it can adopt largely deformed or even unfolded conformations, which may render the lever arm incompetent for force transmission. The conformational plasticity of the lever arm for small-angle deformation at the apo condition may be used as a force buffer to prevent the lever arm from unfolding during the power stroke action of the motor domain.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3