Affiliation:
1. Department of Physics/Centre for Materials Science and Nanotechnology, University of Oslo , 0316 Oslo, Norway
Abstract
The ultra-wide bandgap of gallium oxide provides a rich plethora of electrically active defects. Understanding and controlling such defects is of crucial importance in mature device processing. Deep-level transient spectroscopy is one of the most sensitive techniques for measuring electrically active defects in semiconductors and, hence, a key technique for progress toward gallium oxide-based components, including Schottky barrier diodes and field-effect transistors. However, deep-level transient spectroscopy does not provide chemical or configurational information about the defect signature and must, therefore, be combined with other experimental techniques or theoretical modeling to gain a deeper understanding of the defect physics. Here, we discuss the current status regarding the identification of electrically active defects in beta-phase gallium oxide, as observed by deep-level transient spectroscopy and supported by first-principles defect calculations based on the density functional theory. We also discuss the coordinated use of the experiment and theory as a powerful approach for studying electrically active defects and highlight some of the interesting but challenging issues related to the characterization and control of defects in this fascinating material.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献