Affiliation:
1. School of Aerospace Engineering, Xiamen University, Xiamen 361005, China
Abstract
Shock wave/boundary layer interaction (SWBLI) is a widespread phenomenon in supersonic flows and has received extensive attention. The boundary layer is generated due to viscous stress, which is a kind of macroscopic manifestation of molecular nonequilibrium motion, namely, nonequilibrium effects. In this paper, an investigation is conducted on SWBLI from the perspective of nonequilibrium effects. A method is proposed for studying nonequilibrium effects based on the Navier–Stokes (NS) equations and the Reynolds-averaged NS (RANS) equations. The SWBLI at Mach 2 and Mach 6 is concerned. The results show that nonequilibrium effects associated with the incident shock wave are weaker than that in the boundary layer for a Mach 2 incoming flow. Neither the separation shock wave nor the incident shock wave has an obvious interaction with nonequilibrium effects in the boundary layer. However, the nonequilibrium effects of the incident shock wave are stronger for a Mach 6 incoming flow, and it has an obvious interaction with the nonequilibrium effect in the boundary layer. We also discuss the relation between nonequilibrium effects and energy conversion in the boundary layer. The analysis reveals that changes in the gradients of total energy-related nonequilibrium effects contribute to the change in total energy by influencing the gradient of the heat flux and the power of viscous stress. Thus, this work provides the flow characteristics of boundary layer separation and energy conversion mechanism of SWBLI from the perspective of nonequilibrium effects, as well as the interaction of nonequilibrium effects between the shock wave and boundary layer.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Fujian Province of China
Fundamental Research Funds for the Central Universities
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献