dxtb—An efficient and fully differentiable framework for extended tight-binding

Author:

Friede Marvin1ORCID,Hölzer Christian1ORCID,Ehlert Sebastian2ORCID,Grimme Stefan1ORCID

Affiliation:

1. Mulliken Center for Theoretical Chemistry, University of Bonn 1 , Bonn 53115, Germany

2. AI4Science, Microsoft Research 2 , Evert van de Beekstraat 354, 1118CZ Schiphol, Netherlands

Abstract

Automatic differentiation (AD) emerged as an integral part of machine learning, accelerating model development by enabling gradient-based optimization without explicit analytical derivatives. Recently, the benefits of AD and computing arbitrary-order derivatives with respect to any variable were also recognized in the field of quantum chemistry. In this work, we present dxtb—an open-source, fully differentiable framework for semiempirical extended tight-binding (xTB) methods. Developed entirely in Python and leveraging PyTorch for array operations, dxtb facilitates extensibility and rapid prototyping while maintaining computational efficiency. Through comprehensive code vectorization and optimization, we essentially reach the speed of compiled xTB programs for high-throughput calculations of small molecules. The excellent performance also scales to large systems, and batch operability yields additional benefits for execution on parallel hardware. In particular, energy evaluations are on par with existing programs, whereas the speed of automatically differentiated nuclear derivatives is only 2 to 5 times slower compared to their analytical counterparts. We showcase the utility of AD in dxtb by calculating various molecular and spectroscopic properties, highlighting its capacity to enhance and simplify such evaluations. Furthermore, the framework streamlines optimization tasks and offers seamless integration of semiempirical quantum chemistry in machine learning, paving the way for physics-inspired end-to-end differentiable models. Ultimately, dxtb aims to further advance the capabilities of semiempirical methods, providing an extensible foundation for future developments and hybrid machine learning applications. The framework is accessible at https://github.com/grimme-lab/dxtb.

Funder

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3