Halogen's effect on the photoelectric properties of two-dimensional organic–inorganic hybrid perovskite (MTEA)2MAPb2X7 (X = Cl, Br, I) with a Ruddlesden–Popper structure

Author:

Wu Xiao-Juan1,Ding Yu-Feng1ORCID,Liu Biao2ORCID,Yang Jun-Liang2ORCID,Cai Meng-Qiu1ORCID

Affiliation:

1. Hunan Provincial Key Laboratory of High-Energy Scale Physics and Applications, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China

2. Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, China

Abstract

Recently, a two-dimensional (2D) Ruddlesden–Popper (RP) organic–inorganic hybrid perovskite material (MTEA)2MAn−1PbnI3n+1 (n = 1–6) has attracted great attention, and experiments have reported that the thicker material (MTEA)2(MA)4Pb5I16 (n = 5) perovskite material has excellent environmental stability and improved photovoltaic stability. However, considering that the thickness of the material and the substitution of halogen anions have influence on photoelectric properties of materials. In this paper, we study the photoelectric properties of 2D RP organic–inorganic hybrid perovskite (MTEA)2MAPb2X7 (X = Cl, Br, I) (n = 2) based on the density functional theory. The calculated results show that as the halogen in (MTEA)2MAPb2Cl7 varies from Cl to I, the bandgap decreases, the absorption intensity increases, and the exciton binding energies decrease, which is significantly higher than that of MAPbI3 crystal photovoltaic materials, indicating that the material (MTEA)2MAPb2X7 (X = Cl, Br, and I) (n = 2) is more suitable as candidates for luminescent devices. Our work provides opportunities and challenges for the application of 2D RP organic–inorganic hybrid perovskites in luminescent devices.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3