Two-dimensional Rashba superconductivity in Ni/Bi bilayers evidenced by nonreciprocal transport

Author:

Hayashi Hiroki12ORCID,Ando Kazuya123ORCID

Affiliation:

1. Department of Applied Physics and Physico-Informatics, Keio University 1 , Yokohama 223-8522, Japan

2. Keio Institute of Pure and Applied Science, Keio University 2 , Yokohama 223-8522, Japan

3. Center for Spintronics Research Network, Keio University 3 , Yokohama 223-8522, Japan

Abstract

When two different materials are brought together, a plethora of quantum phenomena and functionalities can emerge. A prominent example is the superconductivity in Ni/Bi bilayers, which arises from the artificial layered structure composed of the non-superconducting ferromagnetic and heavy metals. Although this system has been shown to exhibit unconventional superconducting properties, the underlying mechanism of the superconductivity remains elusive. Here, we provide experimental evidence of the microscopic coexistence of two-dimensional (2D) superconductivity and broken space-inversion symmetry in the Ni/Bi bilayer. The evidence is obtained from nonreciprocal transport around the superconducting transition temperature, where the resistance depends on the direction of an applied current and an external magnetic field. We find that the nonreciprocal superconducting transport is most pronounced around the Berezinskii–Kosterlitz–Thouless transition temperature. These observations support the 2D Rashba superconductivity in the Ni/Bi bilayer, which will serve as a basis for advancing the understanding of unconventional superconductivity.

Funder

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3