Solute interaction-driven and solvent interaction-driven liquid–liquid phase separation induced by molecular size difference

Author:

Iida Yuya1ORCID,Hiraide Shotaro1ORCID,Miyahara Minoru T.1ORCID,Watanabe Satoshi1ORCID

Affiliation:

1. Department of Chemical Engineering, Kyoto University , Katsura, Nishikyo, Kyoto 615-8510, Japan

Abstract

We conducted molecular dynamics (MD) simulations in a binary Lennard-Jones system as a model system for molecular solutions and investigated the mechanism of liquid–liquid phase separation (LLPS), which has recently been recognized as a fundamental step in crystallization and organelle formation. Our simulation results showed that LLPS behavior varied drastically with the size ratio of solute to solvent molecules. Interestingly, increasing the size ratio can either facilitate or inhibit LLPS, depending on the combination of interaction strengths. We demonstrated that the unique behavior observed in MD simulation could be reasonably explained by the free energy barrier height calculated using our thermodynamic model based on the classical nucleation theory. Our model proved that the molecular size determines the change in number of interaction pairs through LLPS. Varying the size ratio changes the net number of solute–solvent and solvent–solvent interaction pairs that are either broken or newly generated per solute–solute pair generation, thereby inducing a complicated trend in LLPS depending on the interaction parameters. As smaller molecules have more interaction pairs per unit volume, their contribution is more dominant in the promotion of LLPS. Consequently, as the size ratio of the solute to the solvent increased, the LLPS mode changed from solute-related interaction-driven to solvent-related interaction-driven.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3