Spectral response between particle and fluid kinetic energy in decaying homogeneous isotropic turbulence

Author:

Schiødt M.1ORCID,Hodžić A.1ORCID,Evrard F.2ORCID,Hausmann M.2ORCID,Van Wachem B.2ORCID,Velte C. M.1ORCID

Affiliation:

1. Department of Civil and Mechanical Engineering, Technical University of Denmark 1 , Kongens Lyngby, Denmark

2. Faculty of Process and Systems Engineering, Otto von Guericke University 2 , Magdeburg, Germany

Abstract

In particle-laden turbulence, the Fourier Lagrangian spectrum of each phase is regularly computed, and analytically derived response functions relate the Lagrangian spectrum of the fluid and the particle phase. However, due to the periodic nature of the Fourier basis, the analysis is restricted to statistically stationary flows. In the present work, utilizing the bases of time-focalized proper orthogonal decomposition (POD), this analysis is extended to temporally non-stationary turbulence. Studying two-way coupled particle-laden decaying homogeneous isotropic turbulence for various Stokes numbers, it is demonstrated that the temporal POD modes extracted from the dispersed phase may be used for the expansion of both fluid and particle velocities. The POD Lagrangian spectrum of each phase may thus be computed from the same set of modal building blocks, allowing the evaluation of response functions in a POD frame of reference. Based on empirical evaluations, a model for response functions in non-stationary flows is proposed. The related energies of the two phases is well approximated by simple analytical expressions dependent on the particle Stokes number. It is found that the analytical expressions closely resemble those derived through the Fourier analysis of statistically stationary flows. These results suggest the existence of an inherent spectral symmetry underlying the dynamical systems consisting of particle-laden turbulence, a symmetry which spans across stationary/non-stationary particle-laden flow states.

Funder

HORIZON EUROPE European Research Council

Poul Due Jensens Fond

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3