Epitaxial growth of CO on NaCl(100) studied by infrared spectroscopy

Author:

Chang Huan-Cheng1,Richardson Hugh H.1,Ewing George E.1

Affiliation:

1. Department of Chemistry, Indiana University, Bloomington, Indiana 47405

Abstract

Vibrational spectra of CO physisorbed onto well defined NaCl(100) surfaces were studied using a Fourier transform infrared interferometer. Structures of CO starting from the monolayer to multilayers were explored. At 31.5 K and a CO pressure of 1×10−6 mbar only the monolayer is formed. Polarization measurements confirm our earlier study that the monolayer CO molecules are aligned perpendicular to the NaCl(100) surface. Increasing the CO pressure to 7×10−6 mbar produces multilayer adsorption. The multilayer spectra closely resemble that of α-CO absorption previously reported. The near perfect match of crystal structures and lattice constants of α-CO and NaCl is reasoned to force the epitaxial growth of single crystal multilayers in our experiments. At 22 K the monolayer absorption is at 2155.01 cm−1 with a bandwidth (FWHH) of 0.26 cm−1. The two prominent features in the multilayer spectra at 22 K are assigned to the longitudinal optical (LO) mode at 2142.54 cm−1 and the transverse optical (TO) mode at 2138.51 cm−1. Their frequency separation is a consequence of the lowering of the cubic symmetry of the bulk α-CO crystal by the shape, in the form of thin slabs, of our multilayer samples. Their bandwidths depend on the thickness of the sample and are characterized by a bandwidth parameter of 0.25 cm−1 for the LO mode and 0.85 cm−1 for the TO mode. The relative absorbances of these modes depend on the polarization of the infrared radiation. Theoretical formalism to account for the band splitting and absorption profiles of the infrared absorption is reviewed and applied to our measurements. While many features of our data can be explained by the present theory, further work is required to account for all the experimental results.

Publisher

AIP Publishing

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3