Evolution of the age-included nearest pair distribution in disperse multiphase flows

Author:

Zhang Duan Z.1ORCID,Wang Min1ORCID,Balachandar S.2ORCID

Affiliation:

1. Theoretical Division, Fluid Dynamics and Solid Mechanics Group, T-3, Los Alamos National Laboratory 1 , Los Alamos, New Mexico 87545, USA

2. Department of Mechanical and Aerospace Engineering, University of Florida 2 , Gainesville, Florida 32611, USA

Abstract

The age of the nearest particle pair is introduced as the difference between the current time and the most recent time when the nearest particle pair was formed. The evolution equation for the age-included nearest pair distribution function is derived. With the assumption of random destruction of the nearest particle pairs, the evolution equation predicts the exponential probability distribution of the ages of the nearest particle pairs. Particle-resolved numerical simulations with moving particles are performed to verify this prediction. The equation is then used to derive the evolution equation for the particle–fluid–particle (PFP) stress, which is known to be related to hyperbolicity of the two-fluid equations. It is found that the relaxation time of the age probability distribution is also the relaxation time for the PFP stress. Guided by the closure terms in the PFP stress evolution equation, we study kinematics of the nearest particle pairs in the particle-resolved simulations for flows caused by sedimentation of the particles with initially isotropic and homogeneous particle distributions. At the steady states, the particle Reynolds numbers are around 20. Anisotropy and inhomogeneity of particle distributions are seen to develop in these flows. The mean distances to the nearest particles and evolution of the distribution of the Voronoi cell volumes are studied. We also found the PFP stress is closely related to the changes in these inter-particle scale quantities.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3